Laboratory of Surface Engineering and Vascular Prostheses (BioGraftLab)
The research activity of the Team focuses on surface engineering of biomaterials, with particular emphasis on cardiovascular implants. The main goal of the work is to change the biological properties of the surface.
A large part of the Laboratory's work focuses on the processes of obtaining and modifying vascular prostheses - we have developed methods of obtaining prostheses based on the processes of polymer solution blowing and phase inversion.
The laboratory also conducts research on the modification and analysis of biomedical surfaces, in particular research on surface-cell and surface-blood interactions.
Areas of Research:
- synthesis and characterization of polymer materials (hydrogels, coatings, porous scaffolds)
- surface modification
- bioactive/biopassive coatings
- tissue-engineered vascular grafts
- surface endothelialization
- peptides coupling
- blood-material interactions
- cell-material interactions
- bioprinting
We offer cooperation in the field of surface analysis: physicochemical (morphology, wettability, FTIR spectroscopy), biological (hemolysis, cytotoxicity, cell adhesion, confocal analysis), as well as the production of porous, micro/nano fibrous materials with a given macro- and microscopic properties. In the field of surface modification, we offer methods aimed at e.g. changing surface wettability or improving cell adhesion (also selective adhesion). We cooperate e.g. with Institute of Metallurgy and Materials Science (Polish Academy of Sciences), Institute of Optoelectronics (Military University of Technology), Universitätsklinikum in Erlangen and National Taiwan University of Science and Technology in Taipei.
Services and equipments:
- in vitro analysis (cytotoxicity, cell adhesion, flow cytometry)
- microscopic analysis (fluorescent, electron, confocal, optical)
- surface analysis (wettability, FTIR-ATR)
- hemocompatibility analysis (hemolysis, Siemens coagulation analyzer)
Team leader
Name | Room | Phone | |
---|---|---|---|
Butruk-Raszeja Beata, dr hab. inż. | 505 | 22 234 64 19 | Beata.Raszeja@pw.edu.pl |
Members
Name | Room | Phone | |
---|---|---|---|
Ciach Tomasz, prof. dr hab. inż. | 517 | 22 234 63 95 | Tomasz.Ciach@pw.edu.pl |
Wojasiński Michał, dr inż. | 501 | 22 234 63 10 | Michal.Wojasinski@pw.edu.pl |
PhD students
Projects:
2022-2024: "Vascular endothelium-supporting materials: Understanding the structural and physicochemical requirements", NCN, OPUS-LAP
2019-2021: "GuideTiReg - Scaffolds for guided neural and muscle tissue regeneration", NCBiR, Polish-Taiwan Cooperation
2018-2021: "BioGraft – biomimetic small-diameter vascular prosthesis", NCBiR, Lider VIII
2015-2018: "Surface modification of polyurethane vascular graft", NCBiR, Polish-Taiwan Cooperation
2014: "CardioMat - Mimicking natural endothelium - bioactive advanced materials for blood-contacting devices”" NCBiR, Polish-Norwegian Cooperation
2012-2015: "The influence of biomaterials surface modification on hemocompatibility and endothelialization process", NCN, Preludium
Selected papers:
- Łopianiak I., Kawecka A., Civelek M., Wojasiński M., Cicha I., Ciach T., Butruk-Raszeja B.: Characterization of Blow-Spun Polyurethane Scaffolds–Influence of Fiber Alignment and Fiber Diameter on Pericyte Growth, ACS Biomaterials Science & Engineering, 2024, DOI:10.1021/acsbiomaterials.4c00051
- Łopianiak I., Rzempołuch W., Civelek M., Cicha I., Ciach T., Butruk-Raszeja B.:Multilayered blow-spun vascular prostheses with luminal surfaces in Nano/Micro range: the influence on endothelial cell and platelet adhesion, Journal of Biological Engineering, 2023, DOI: 10.1186/s13036-023-00337-9
- Kuźmińska A., Kwarta D., Ciach T., Butruk-Raszeja B.: Cylindrical polyurethane scaffold fabricated using the phase inversion method: Influence of process parameters on scaffolds’ morphology and mechanical properties, Materials, 2021, DOI:10.3390/ma14112977
- Kuźmińska A., Wojciechowska A., Butruk-Raszeja B.: Vascular polyurethane prostheses modified with a bioactive coating—physicochemical, mechanical and biological properties, International Journal of Molecular Sciences, 2021, DOI:10.3390/ijms222212183
- Łopianiak I., Wojasiński M., Kuźmińska A., Trzaskowska P., Butruk-Raszeja B.: The effect of surface morphology on endothelial and smooth muscle cells growth on blow-spun fibrous scaffolds, Journal of Biological Engineering, 2021, DOI:10.1186/s13036-021-00278-1
- Butruk-Raszeja B., Kuźmińska A., Ciach T., Adipurnama I., Yang M.-Ch.: Endothelial cell growth on polyurethane modified with acrylic acid and REDV peptide, Surface Innovations, 2020, DOI:10.1680/jsuin.19.00029
- Butruk-Raszeja B., Kuźmińska A., Wojasiński M., Piotrowska Z.: Physicochemical and mechanical properties of blow spun nanofibrous prostheses modified with acrylic acid and REDV peptide, Coatings, 2020, DOI:10.3390/coatings10111110
- Kuźmińska A., Butruk-Raszeja B., Stefanowska A., Ciach T.: Polyvinylpyrrolidone (PVP) hydrogel coating for cylindrical polyurethane scaffolds, Colloids and Surfaces B-Biointerfaces, 2020, DOI:10.1016/j.colsurfb.2020.111066
- Lech A., Butruk-Raszeja B., Ciach T., Lawniczak-Jablonska K., Kuzmiuk P., Bartnik A., Wachulak P., Fiedorowicz H.: Surface modification of PLLA, PTFE and PVDF with extreme ultraviolet (EUV) to enhance cell adhesion, International Journal of Molecular Sciences, 2020, DOI:10.3390/ijms21249679
- Łojszczyk I., Kuźmińska A., Butruk-Raszeja B., Ciach T.: Fenton-type reaction grafting of polyvinylpyrrolidone onto polypropylene membrane for improving hemo- and biocompatibility, Materials Science & Engineering C - Materials for Biological Applications, 2020, DOI:10.1016/j.msec.2020.110960
- Łopianiak I., Butruk-Raszeja B.: Evaluation of sterilization/disinfection methods of fibrous polyurethane scaffolds designed for tissue engineering applications, International Journal of Molecular Sciences, 2020, DOI:10.3390/ijms21218092
- Łopianiak I., Wojasiński M., Butruk-Raszeja B.: Properties of polyurethane fibrous materials produced by solution blow spinning, Chemical and Process Engineering , 2020, DOI:10.24425/cpe.2020.136012